
 Assignment (Excerpt) Stephan Brumme June 6rd, 2004
student ID: 10117339/UTS, 702544/UP

 www.stephan-brumme.com Object Oriented Modelling - 1 -
autumn semester 2004

This is an excerpt from my group assignment.

SECTION 3: CRITICIZING UML
UML is a highly standardized graphical modelling language focused on the description of

large software products. It contains mechanism for the static structure and dynamic behav-
iour of such complex systems. UML has a notation to reduce ambiguity and confusion
throughout a project. UML specifies a standard notation that covers a large part of the design
activities that are needed to build systems. It can also be implemented in any programming
language and methodology. UML has given every software practitioner a common notation to
communicate ideas and move away from the multitude of proprietary notations that we have
accumulated over the years.

One major drawback with UML but which is included in every Object Orientated design
process is Use Cases. Use Cases helps describe the problems that the user has to solve.
UML has Use Case diagrams which are at a very high level and don’t give enough detailed
description of the overall functionality of the system. Use Cases give a more detailed per-
spective of the intended behaviour of the system. In this assignment we found it important to
develop Use cases especially for the Sequence diagram.

The history of UML is based on the experience of insufficient notations and, most impor-
tant, a lack of proper standardization. To fulfil the wishes, needs and requirements of the
software developer community, UML borrows many ideas from older modelling languages
and tries to provide a unified environment.

One of the major problems of UML is that it is almost impossible to merge different ap-
proaches and attempt to create a new language able to do everything: you have to give up
specialised features of the original notation and therefore lose some of its power. On the
other hand, each UML diagram increases the number of symbols used and raises the effort
needed to learn the language.

Therefore the very first model of a system is often created in a stripped down modelling
language: a couple of circles and lines between them. UML often comes only as the second
step, not the first one. The problem can be that you go directly from a problem to classes -
methods and data. There is leap into too much structural detail, because of the level of detail
there is conflicting ideas on how to go ahead and develop the models. Its is also hard to see
where the responsibilities for each class lie.

Even though there is some software on the market, we had no possibility to automatically
translate the UML description into working code. This is essential for the success of a model-
ling language that is such closely coupled to the actual code. A roundtrip feature (forward
and reverse engineering) is essential, too. In our case to make sure the Class diagrams are
complete the code was written in C# to ensure that all the attributes, operations and relation-
ships are correct and accounted for.

Another issue is to try and ensure the consistency between the UML diagrams. UML con-
sists of nine types of diagrams. The range of diagrams can leave the overall design specifi-
cation in an inconsistent state. By using a CASE tool like IBM’s Rational Rose this can be
managed as changes in one type of diagram can be reflected in other diagrams.

There is no way to guarantee that a UML model fully complies with the requirements sta-
ted by a customer. A human could examine the model, though, but we think this process has
to be automated. Large projects are decomposed into smaller, more manageable pieces
called subsystems. The interfaces between subsystems are important to the integration into
the larger whole that is the system. Sequence diagrams are used to specify the interactions
between classes on the borders of these subsystems

 Assignment (Excerpt) Stephan Brumme June 6rd, 2004
student ID: 10117339/UTS, 702544/UP

 www.stephan-brumme.com Object Oriented Modelling - 2 -
autumn semester 2004

One of the team members, Stephan Brumme, has some experience with the Fundamental
Modelling Language (http://fmc.hpi.uni-potsdam.de) supported by the market leader in busi-
ness software: SAP. This language explicitly reduces the numbers of distinct diagrams and
the number of distinct shapes, too, by strictly using bipartite graphs. It emphasizes the dy-
namic aspect of software and clearly allows extending and changing a model. The reality
shows that requirements often change after their initial settings and have to be adjusted. This
is quite hard with UML because most UML diagrams would have to be completely redrawn.

FMC also takes into consideration that a modelling language is meant for humans. In con-
clusion, a modelling language should not be too close to actual code. Instead, it should re-
side on an abstract level above the code and is allows hiding several insignificant aspects.
The hierarchical refinement of UML diagrams is insufficient, even package diagrams are not
abstract enough.

There are some experiments done by visualisation researchers on the usability of graphi-
cal notations. The well-known visual variables by Jacques Bertin (Semiology of graphics:
diagrams, networks, maps. 1967) describe basic attributes used to create diagrams in gen-
eral. Scientists in the field of geography heavily rely on diagrams and maps and, hence, have
several hundred years of experience with graphical languages.

One of the main facts is that humans have a limited memory and a limited ability to distin-
guish entities. To transport a huge amount of information, as required by software modelling
languages, these facts have to be taken into consideration. For instance, most people cannot
perceive more than seven distinct objects. Most UML class diagrams contain far more than
only seven classes. To circumvent this problem, a proper use of colours, shapes, size and
many more may help. Unfortunately, there is only a restricted use in UML: slight variations of
fonts (bold, italics, etc.) are just not enough to aid the construction of a mental map of UML
diagrams. Replacing straight lines by slightly curved lines and substituting sharp corners by
round corners are subtle ways to make a distinction between shapes. It turned out that using
colours can drastically increase the meaning of a diagram. This does not change the con-
tents at all – it merely strengthens what UML is meant for: to make software systems for un-
derstandable for humans.

Moreover, UML diagrams do not make consistent use of certain graphical notation: arrows
can stand for inheritance (class diagrams) or temporal order (state diagrams).

In the next version of UML, software engineers should sit together with experts in the field
of psychological and visual research in order to optimize the notation.

UML forces you to talk in their language not in the business language of users. The ana-
lyst must translate what the user wants into another language which may lead to the misin-
terpretation of requirements when translated into UML notation.

Everyone has their own interpretation of UML and the process to create the UML work
products. Therefore trying to agree on the static representation of the application is a non-
trivial task. Then in addition the interaction of object with each other is another layer of com-
plexity added to the assignment. We noticed that I our earlier sessions that one person had
to drive the process in order to make progress.

Models are not fully operating software systems and shouldn’t be treated as such. They
are a positive start and by no means a guarantee of success. For example UML cannot con-
trol or tight coupling and typically bad design like public attributes in classes for example pub-
lic static non-final variables. Using Design patterns within UML are an extremely useful
mechanism to document and learn about common reusable design approaches. Using de-
sign patterns you can reduce the designing time for building software systems and more im-
portantly ensure that your system is consistent and stable in terms of architecture and de-
sign. The UML class diagrams provide an easy way to capture and document Design pat-
terns. UML doesn’t enforce reusable, loosely coupled design so it is left up to the skill and
creativity of the people involved in the project to achieve those goals.

 Assignment (Excerpt) Stephan Brumme June 6rd, 2004
student ID: 10117339/UTS, 702544/UP

 www.stephan-brumme.com Object Oriented Modelling - 3 -
autumn semester 2004

UML notation can be unwieldy at times, especially stereo-typing and other textually ex-
pressed relationships, but it is a step in the right direction. Any tool for system design and
_expression must be sufficiently extensible as to not slow the blinding pace of development
while being standard enough to be universally understood. UML goes a long way towards
accomplishing this, and there will undoubtedly be many iterations of its design. However,
ultimately any notation will have its tradeoffs, just like any system.

The language surely offers a lot of great features and seems to be the first widely ac-
cepted standard. It can never be said enough how important standards are: they allow soft-
ware developers from different countries, with different background and different experience
to work together and share a common view on a model. We think that UML is a good model-
ling language but there is still room left for further improvements.

