Tutorial "Performance Evaluation Techniques" Fourth Problem Sheet

Dr.-Ing. Andreas Willig
Hasso-Plattner-Institute, University of Potsdam
email: willig@hpi.uni-potsdam.de

May 26, 2003

Problem 1 (Required!):
Install the OMNet++ discrete event simulation package in the latest version on your computer and run the test simulations. You can find the software at:
http://whale.hit.bme.hu/omnetpp/.
Read the Manual. Set up a M/M/2 simulation. Vary the load ρ as $\rho \in$ $\{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8\}$ (assume a service rate μ of one customer per second and vary λ accordingly). For each ρ create 10000 customers (the initial number of customers in the system is zero).

- determine the mean system response time for all the customers (sample mean)
- look every 0.1 seconds at the system, observe the number of customers in the system at each sampling point and count how often exactly k customers are found $(k \geq 0)$. Plot the relative frequencies in a histogram.

Compare your simulation results with analytical results.
Submit your code $(\mathrm{C}++)$, your simulation results and the correct analytical results.

	4

Problem 2:

Use the Pollaczek-Khintchine mean value formula to show that a $M / M / 1$ system has twice the expected number of customers in the system as the $\mathrm{M} / \mathrm{D} / 1$ system as $\rho \rightarrow 1(\rho<1)$

Problem 3:

Consider the $\mathrm{M} / \mathrm{M} / N / N$ loss system $(N \geq 1)$ with arrival rate λ and μ being the rate of a single server.

- (0.5) Draw the state diagram
- (0.5) Give the generator matrix \mathbf{Q}
- (1.5) Find the steady-state vector $\pi=\left(\pi_{0}, \pi_{1}, \ldots, \pi_{N}\right)$
- (0.5) Using this, show that with $\rho=\frac{\lambda}{\mu}$:

$$
\operatorname{Pr}\left[\text { Customer loss] }=\pi_{N}=\frac{\rho^{N}}{N!} \frac{1}{\sum_{k=0}^{N} \frac{\rho^{k}}{k!}}\right.
$$

(this is the Erlang loss formula)

- (1) Assume $\rho=\frac{\lambda}{\mu}=5$ and evaluate $\operatorname{Pr}[$ Customer loss] for $N=1,2,3, \ldots, 20$.
- (1) How might a telephone company use this formula?

Problem 4:

Consider the fully Markovian queueing network shown in this figure:

- Find a stability condition for this system.
- Find the mean time for a customer to proceed through the system.

