Tutorial "Performance Evaluation Techniques" Fourth Problem Sheet

Dr.-Ing. Andreas Willig Hasso-Plattner-Institute, University of Potsdam email: willig@hpi.uni-potsdam.de

May 26, 2003

Date of assignment	May 28, 2003 (in the tutorial)
Date of submission	June 11, 2003 (in the tutorial)

Problem 1 (Required!):

Install the OMNet++ discrete event simulation package in the latest version on your computer and run the test simulations. You can find the software at: http://whale.hit.bme.hu/omnetpp/.

Read the Manual. Set up a M/M/2 simulation. Vary the load ρ as $\rho \in \{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8\}$ (assume a service rate μ of one customer per second and vary λ accordingly). For each ρ create 10000 customers (the initial number of customers in the system is zero).

- determine the mean system response time for all the customers (sample mean)
- look every 0.1 seconds at the system, observe the number of customers in the system at each sampling point and count how often exactly k customers are found $(k \ge 0)$. Plot the relative frequencies in a histogram.

Compare your simulation results with analytical results. Submit your code (C++), your simulation results and the correct analytical results.

4	4
---	---

Problem 2:

Use the Pollaczek-Khintchine mean value formula to show that a M/M/1 system has twice the expected number of customers in the system as the M/D/1 system as $\rho \to 1 \ (\rho < 1)$

1

Problem 3:

Consider the M/M/N/N loss system ($N \ge 1$) with arrival rate λ and μ being the rate of a single server.

- (0.5) Draw the state diagram
- (0.5) Give the generator matrix **Q**
- (1.5) Find the steady-state vector $\pi = (\pi_0, \pi_1, \dots, \pi_N)$
- (0.5) Using this, show that with $\rho = \frac{\lambda}{\mu}$:

$$\Pr\left[\text{Customer loss}\right] = \pi_N = \frac{\rho^N}{N!} \frac{1}{\sum_{k=0}^N \frac{\rho^k}{k!}}$$

(this is the Erlang loss formula)

- (1) Assume $\rho = \frac{\lambda}{\mu} = 5$ and evaluate $\Pr[\text{Customer loss}]$ for $N = 1, 2, 3, \dots, 20$.
- (1) How might a telephone company use this formula?

Problem 4:

Consider the fully Markovian queueing network shown in this figure:

- Find a stability condition for this system.
- Find the mean time for a customer to proceed through the system.

3

5