

SEMINAR

ANALYSE , PLANUNG UND KONSTRUKTION

COMPUTERGRAFISCHER SYSTEME

The OpenGL Shading Language

Stephan Brumme

HASSO-PLATTNER-INSTITUT
UNIVERSITÄT POTSDAM

FACHGEBIET COMPUTERGRAFISCHE SYSTEME

PROF. DR. J. DÖLLNER

WINTERSEMESTER 2003/2004

The OpenGL Shading Language - 2 -

The OpenGL Shading Language - 3 -

The OpenGL Shading Language

Stephan Brumme
stephan.brumme@hpi.uni-potsdam.de

Hasso-Plattner-Institute at the University of Potsdam

Abstract The introduction of programmable graphics hardware opened a door to a new era of
real-time rendering. The manifold uses of vertex and fragment shaders enable developers and art-
ists to achieve many visuals effects at high frame rates on consumer level hardware, which has
been formerly rendered offline. The increasing effort of writing efficient and effective shaders
leads to the creation and establishment of new higher-level languages which can be compared to
already existing general-purpose languages such as C or Java. One of these shading languages, the
OpenGL Shading Language (known as GLSL), will be discussed and examined in depth. I de-
scribe its conceptual design, explain how key decisions were resolved and present a working im-
plementation. Moreover, I assess the current situation and what particular extensions or improve-
ments can be expected in the near future. These conclusions will be matched up to concurrently
evolving languages like NVIDIA’s Cg or Microsoft’s High Level Shading Language (HLSL) in
order to identify cross-pollinations. A 3D chess game written using GLSL demonstrates a real-life
application of modern vertex and fragment shader programming.

CR Categories and Subject Descriptors D.3.2 [Language Classifications] Specialized Applica-
tion Languages; I.3.1 [Computer Graphics] Hardware Architecture; I.3.3 [Computer Graphics]
Picture/Image Generation; I.3.6 [Computer Graphics] Methodologies and Techniques; I.3.7 [Com-
puter Graphics] Three-dimensional Graphics and Realism.

Keywords shading language, procedural shading, real-time image generation.

1 INTRODUCTION
Recent customer level graphics hardware un-
dergoes a major shift from hardly supporting
basic drawing operations to rendering complex
scenes in real-time. The astonishing demonstra-
tion of selected scenes from Square Studios’
movie Final Fantasy at SIGGRAPH 2001
[NVIDIA01a] brilliantly underlined the amaz-
ing power of modern graphics accelerators.

The fixed functionality enforced by graphic
library standards like OpenGL [OpenGL03a] or
DirectX [Microsoft02a] has been dominating
the conceptual chip design for many years.
Meanwhile, commercially successful software
renderers such as Pixar’s Renderman [Hanra-
han90, Pixar] introduced fundamentally new
concepts like procedural shading by allowing to
program and configure almost each step of the
rendering process. These programs are called
shaders.

Many applications, such as CAD software or
the steadily growing market of computer
games, would clearly benefit from the use of
shaders if they could run at real-time frame
rates thus allowing interactive user interfaces.
Since software based solutions turned out to be
too slow, graphics hardware vendors provide a
limited set of shader processing units in hard-
ware. These shaders are written in a dedicated
shader assembler languages mapping directly to
the hardware. Only recently a standardized as-
sembler language evolved which does not ex-
ploit the actual hardware features to their full
extent since it is restricted to the common sub-
set of the major vendors’ assembler languages.

Inventing a completely new language does
not always lead to a handy and intuitive syntax.
Almost all high level shading languages borrow
their basic concepts and structures from C
[Kernighan88] which is well-known for its high
performance and portability while being easily
mapped to hardware instructions. The wide-
spread use of C (incl. C++) in the software in-

The OpenGL Shading Language - 4 -

dustry allows many programmers to get into
touch with these shading languages without too
much effort.

A high level language pushes the program-
mer’s productivity by reducing hardware de-
pendencies, supporting abstraction layers and
enhancing code readability. Even interactive
shader development appears to be feasible right
now [Maya, ATI].

Moreover, just-in-time compilation allows to
map the language to the actual chip using code
optimizers. These optimizers will improve over
time and thus speed up application even after
they were shipped already. New graphics chips
and/or innovative architectures can be sup-
ported as well by providing adequate drivers
that come with specialized shading language
compilers. Vice versa, features not available in
nowadays’ hardware can be emulated: yet,
branching is replaced by equivalent operations
and loops still get unrolled.

In this paper, I present an overview of the
OpenGL Shading Language (abbreviated GLSL,
sometimes also called glslang), which is an
essential part of the soon-to-be-released
OpenGL 2.0 [OpenGL03b, 3Dlabs02]. I
describe the evolution of the basic concepts of
shading languages and their influence on
GLSL. An emphasis will be put on the design
of the language, how it is integrated in the
OpenGL framework and what improvements
can be expected in the future.

Furthermore, the OpenGL Shading Lan-
guage’s ideas will be compared to similar lan-
guages recently developed by NVIDIA and Mi-
crosoft, too.

A brief introduction to the language’s syntax
accompanied by an example should assist the
reader in writing shader based applications.

2 RELATED WORK
Cook’s shade trees [Cook84] laid the founda-
tions of hierarchically subdividing a shading
process into simple routines called shaders. An
exemplary shade tree is shown in figure 1. A
shader’s task is to modify or create values asso-
ciated to a surface, such as its position or color
[Akenine-Möller, pp. 213].

Renderman™ supports various kinds of
shaders to increase the versatility according to
the Reyes (Render Everything You Ever Saw)
architecture of Cook et al. [Cook87]. These
shaders include displacement, surface, light,

volume, and image shaders which proved to be
sufficient for rendering almost any visual effect
of movies, games etc.

The PixelFlow system [Olano95] attempted
to implement a Renderman-like language in a
real-time system. It was a SIMD (single instruc-
tion, multiple data) multiprocessor system and
utilized the concept of deferred shading in order
to shade only visible fragments.

SGI’s OpenGL shader system removed the
major fragment limitations of graphics hard-
ware by mapping mathematical operations to
multipass techniques, mostly texture based. It
has been shown that it is possible to generically
map almost any shading computation to multi-
pass techniques [Peercy00]. Unfortunately,
some of them require an enormous amount of
memory bandwidth and a high floating point
number precision due to their large number of
rendering passes.

The Quake III engine, one of the best selling
computer game engines ever, provides its own
shading language that targets at fragment level
effects, too. It restricts the shaders versatility
very much in order to achieve very high frame
rates.

The Stanford Shading Group decided to
carefully change today’s hardware accelerators’
design to achieve a more efficient resource us-
age. They offload lots of fragment operations to
the vertex level and rely on the hardware’s in-
terpolation abilities [Proudfoot01]. The paper
identified four basic classes of scene data by
classifying their computation frequency:

− constant for the scene (e.g. lighting)
− constant for a group of primitives (mate-

rial of a mesh)

weight of ambient
component

ambient

*
weight of specular

component

normal

*

viewer
surface

roughness

specular function

+

*
copper color

final color

Figure 1. Shade tree for a copper shader [Cook84]

The OpenGL Shading Language - 5 -

− constant per vertex
− constant per fragment

The first two classes are input to each vertex
and/or fragment shader. The third class is both
output of a vertex shader and input of a frag-
ment shader while the last class represents data
generated by a fragment shader and usually
written to the frame buffer. In consequence,
graphics hardware’s pipelines tend to be subdi-
vided into vertex and fragment stages each be-
ing nearly fully programmable. Sometimes the
term pixel shader is used when actually refer-
ring to a fragment shader.

NVIDIA developed a C-based language
called Cg (“C for graphics”) [NVIDIA03b] to
bring high level shading languages to the mass
market. Cg was one of the first real-time lan-
guages actually available for consumer level
hardware. Its architecture shares many aspects
with Microsoft’s DirectX9 HLSL because both
companies collaborated closely in the process
of creating these two languages. The flexible
design of Cg is considerably open towards fu-
ture extensions and fortunately not limited to
NVIDIA graphics processors.

3 ARCHITECTUR

3.1 Hardware Considerations
GLSL is designed with the intention in mind to
cover at least every functionality of the replaced
OpenGL fixed functionality and to additionally
provide advanced features. It is possible to
write shaders that exactly match the operations
being replaced without a loss of performance
[NVIDIA01b].

Some vendors [ATI] do not even implement
the fixed functionality in the chip design, in-
stead they fully emulate it by transparently exe-
cuting dedicated shaders. McCool et al. re-
ported that an optimized vertex shader outper-
formed the standard path of a NVIDIA Ge-
Force3 by about 25% [McCool01], too.

3.2 Shader Concept in GLSL
Although strongly related to each other, the
OpenGL Shading Language is actually divided
into two parts: one language for the vertex
processor and one for the fragment processor.

The OpenGL committee defines a shader as
a unit of compilation where a set of shaders
linked together is called a program.

Each shader always operates on exactly a
single entity, i.e. a vertex or a fragment, at a
time. There is no explicit knowledge about any
of the preceding or following entities, too. It is
impossible to create new entities within a
shader, and only fragment shaders are allowed
to drop or discard an entity (i.e. a fragment).

The data flow of a shader is shown in figure
2. The vertex shader is granted read-only access
at runtime to so-called attributes representing
the standard OpenGL vertex attributes
(gl_Color , gl_Normal , etc.). In contrast,
constants are known at compile-time and thus
offer a great potential of performance optimiza-
tions.

A uniform variable does not change across
the primitive being processed, e.g. the position
of a light source. All uniforms are read-only,
too, and initialized either directly by an applica-
tion via API commands or indirectly by
OpenGL. The available storage for uniforms
may be limited, exceeding that thresholds

vertex processor fragment processor

standard OpenGL varyings

special
variables

user-defined varyings

user-defined uniforms built-in uniforms

texture maps

color &
depth

standard OpenGL
attributes &

generic attributes

drop fragment

Figure 2. Input, intermediate data flow and output of vertex and fragment shaders

The OpenGL Shading Language - 6 -

throws a either a compile-time or a link-time
error.

Many effects rely on the availability of tex-
ture maps to implement lookup tables or to ren-
der images to object surfaces. Hence, GLSL
permits read-only access via samplers that may
perform filtering if desired.

A very important stage is located between
the vertex and the fragment processor: the
rasterizer. It splits primitives modeled by verti-
ces into discrete portions called fragments. The
rasterizer has to interpolate many values gener-
ated by the vertex processor in order to pass
them the fragment processor. For example, the
texture coordinates varies for each fragment but
can be derived from the vertices via a suitable
interpolation. These values – slightly varying
for each fragment – are called varyings and
guaranteed to be perspective correct.

The final result of the graphics pipeline are
two values which are usually written to the
frame buffer: the fragments’ color and their z-
depths. Figure 3 visualizes the described rela-
tionships.

3.3 Vertex Processor
Whenever an applications invokes a

glVertex call (or one of its glDrawArray
derivates), the vertex and its associated attrib-
utes – such as its color, its normal, its texture
coordinates, user-defined attributes and so on –
are forwarded to the vertex processor which is
in charge of [OpenGL03a]:

− vertex transformation
− normal transformation and normalization
− texture coordinate generation
− texture coordinate transformation
− lighting
− color material application
− clamping of colors

It is important to be aware of the fact that a ver-
tex shader is fully responsible for all of the
above functions. When bypassing the fixed
functionality of OpenGL, the programmer has
to perform all tasks on his own. This applies
especially to vertex transformations which are
usually done in the first few lines of a vertex
shader.

A great variety of vertex shaders employ
texture lookup techniques in order to achieve
interesting visual effects. Indeed, that capability
of the vertex processor seems to be the most
used one and hence requires a huge amount of

careful optimizations to overcome cache stall
issues as done in the recent NVIDIA Force-
Ware driver series [NVIDIA]. Vertex shaders
often serve to provide the opportunity of han-
dling user-defined data formats fitting the ap-
plication’s specialized needs. Vertex compres-
sion/decompression [Deering95, Engel02]
pushes the memory bandwidth efficiency by
magnitudes which increases the overall system
performance. Especially normals seem to offer
a great potential of optimizations since in the
most cases the viewer does not notice even a
dramatically reduced precision.

Some operations cannot be done in vertex
shader since they require information about
more than a single vertex:

− perspective projection
− primitive assembly
− frustum and user clipping
− backface culling
− two-sided lighting selection
− polymode processing
− polygon offset
− depth range

These operations are performed subsequently to
the vertex shader and still conform to the
OpenGL 1.4 definitions.

3.4 Fragment Processor
The rasterizer splits primitives into fragments
and interpolates all varyings across the primi-
tives.

vertex processor

vertex

rasterization

fragment processor

frag-
ment fragmentfragment

fragment processor fragment processor

...

vertex
post-processing

fragment
post-processing

fragment
post-processing

fragment
post-processing

frame buffer

drop drop drop

...

...

drop drop drop

Figure 3. Data processing

The OpenGL Shading Language - 7 -

The fragment processor operates on frag-
ment values and is executed after all vertex
stages, including vertex shaders, were success-
fully completed. It generates just two output
values, namely color and depth. They may be
written to the frame buffer or an off-screen tex-
ture, too.

Typical tasks of a fragment shader are:

− operations on interpolated values
− texture access
− texture application
− fog
− color sum

Like the vertex processor, some parts of the
fixed functionality are executed past finishing
the shader:

− shading model
− coverage
− pixel ownership test
− scissor
− stipple
− alpha test
− depth test
− stencil test
− alpha blending
− logical operations
− dithering
− plane masking

These operations are implemented in hardware
to improve the overall performance and reduce
the shader’s overhead. Although they can be
completely done in a fragment shader, vendors
claim that they are cheap to add to the chip de-
sign and offer great optimization deals such as
preventing pipeline stalls. If desired it is possi-
ble to disable all these operations.

Fragment shaders are allowed to read multi-
ple texture multiple times. The corresponding
filtering is done according to the set OpenGL
state but can be computed in the shader as well
in order to obtain specialized results.

4 LANGUAGE

4.1 Goals
The OpenGL Shading Language aims at real-
time applications running at interactive frame
rates. A shader written in GLSL has to run at a
speed comparable to that of a shader written in
assembler language. That does not mean that

shaders need to be real-time, they can be used
for slow and complex computations as well.

OpenGL has been known for many years for
its tremendous portability. Unlike the market of
operating systems, a single vendor does not
dominate the graphics hardware segment,
which means that portability should play a still
more important role when developing a shading
language. On the other hand, almost anything
available at the assembly language level should
be supported by GLSL.

It is desirable to add GLSL support to cur-
rently existing applications with as less as pos-
sible effort. The integration into OpenGL
should be very tight, seamless, and transparent
in order to achieve a high acceptance among
programmers.

The language should support means to struc-
ture the code and to allow the creation as well
as the usage of shader libraries. Common
mathematical operations, such as square root or
even the noise function, have to be integral part
of the system.

4.2 Key Decisions
Some of these goals are in conflict or contradict
indeed. Even though the speed of graphics
hardware is increasing at an astonishing rate,
the emphasis of the OpenGL Shading Language
is undoubtedly put on performance.

Achieving an optimal performance requires
deep knowledge of the system the shaders will
run on. Due to the diversity of available hard-
ware and software configurations, it seems to
be impossible to reach always the highest speed
possible on each machine. When compiling the
shaders just-in-time, i.e. while the application
that uses shaders runs, the optimizer has the op-
portunity to adapt the generated assembler code
to the host system. Since the graphics hardware
vendors provide these optimizers and put much
effort into it, the shaders will perform nearly
optimal. Taking advantage of parallel vertex
and/or fragment processors available on the
chip and streaming extensions of the CPU [In-
tel], shaders written in a high-level language
such as GLSL may even outperform hand-tuned
assembler code.

Today’s most often used general-purpose
languages include C, C++, and Java. Their im-
perative language proved to be reasonably sim-
ple to learn but rather powerful in their applica-
tion. There is a deep knowledge available how
to write fast but optimizing compilers and link-

The OpenGL Shading Language - 8 -

ers for these languages which simplifies the
graphics driver development. On the other
hand, the Renderman™ shading language tends
to be more declarative or functional because the
framework implicitly decides at runtime which
kind of shaders (like surface, light, etc.) get in-
voked. Their order and calling frequencies is
not fixed and usually cannot be determined in
advance.

Current shaders tend to be quite short in
length, even when used for non-real-time digital
imaging they seldom exceed 1,000 lines of
code. Therefore, object oriented concepts were
considered to be not much of help in these cases
and therefore omitted. In consequence, GLSL is
closer to C than to any of the aforementioned
languages. It attempts to be a general-purpose
language while still focusing on graphics func-
tionality and a clean, straightforward syntax.
Domain-specific languages may perform better
by means of productivity. On the other hand,
they restrict the application of shaders to graph-
ics while some new innovative uses in non-
graphics areas like the computation of mas-
sively parallelized algorithms were shown
[Krüger03].

The language is strictly case sensitive and
supports implicit scoping the way C does. It re-
lies on the same pairing of compiler and linker
to separate the process of code translation from
the process of creating reference binding.
Therefore, shader libraries only have to be
compiled once in advance and then are inde-
pendent from the shaders invoking them. This
approach saves valuable resources, e.g. compile
time.

Reducing type checking to compile-time de-
tects most of the common errors but maintains
a high performance at runtime. Usually, only
wrong texture formats cannot be notified.

4.3 Variables and Types
Experiences gathered in using various lan-
guages to develop shaders, such as done in
Renderman, revealed the need for just three
elementary data types:: bool , int , and
float . All integers are always signed and lim-
ited to 16 bits. float should comply to the
IEEE single precision floating-point definition
for precision and dynamic range. Internal proc-
essing may be less accurate but has to match the
OpenGL 1.5 specification.

Pointers are forbidden in GLSL, there is no
need for strings, too. An undefined return value
of a function is void .

New dedicated data types allow for an easy
and simple access to vectors and matrices:
vec2 , vec3 , and vec4 as well as mat2 ,
mat3 , and mat4 . Vectors support bool eans
and int s if preceded by the letter b or i (e.g.
ivec3). Each vector or color is treated as an
implicit union and its components can be read
or written via its x , y , z , w or r , g, b, a mem-
bers.

Matrices are always constructed using
float s. A matrix’ number of rows equals its
number of columns, i.e. the size is restricted to
2x2, 3x3, and 4x4.

Texture access needs the invocation of sam-
plers. They are available for 1D, 2D, 3D, and
cube mapped textures. Shadow mapping is sup-
ported by 1D and 2D depth textures with auto-
matic comparison.

Variables sharing a common semantics may
be composed to a struct . It must not be
empty, all members types have to be defined in
advance.

Another way to organize values are one-
dimensional arrays. They can be of any (posi-
tive) size, the indices always start at zero.

4.4 Built-in Variables
In the OpenGL Shading Language, there is a
data flow from the fixed functionality to the
programmable processors and back. These two
main parts of the pipeline communicate their
shared state through the use of built-in vari-
ables. All built-in variables have a global scope
and start with the reserved prefix “gl_ ”, e.g.
gl_Position . or gl_FragColor .

Not all variables are available to each shader
since some are restricted to vertex shaders
while others are restricted to fragment shaders.

In addition to the aforementioned special
built-in variables, GLSL provides some built-in
vertex attributes to access a vertex’ color, tex-
ture coordinates etc.

Implementation-specific limitations like the
number of available vertex texture units are ex-
posed through built-constants.

Unlike the previously mentioned built-in
variables, varying variables do not map strictly
one-to-one between vertex shaders and frag-
ment shaders. The cause may be an interpola-
tion algorithm as it is applied for colors across a

The OpenGL Shading Language - 9 -

primitive. Therefore, a fragment shader’s input
front color does not need to exactly match the
color generated by the vertex shader.

4.5 Functions
A function computes a result (output) by apply-
ing an algorithm to the function’s arguments
(input) and the current state. Each argument is
either in , out or inout . If none of these
qualifier is specified the argument is always as-
sumed to be in . All input and output values are
addressed by-copy, i.e. the functions works
with local copies and thus aliasing problem are
avoided. A shader may write to in -parameters
since that will modify only the local copy. The
const keyword prevents the shader writer
from such a modification of in arguments but
the qualifier cannot be used for inout or out
for obvious reasons. All of the following func-
tions are essentially the same, only the last two
differ slightly by their calling conventions:

vec4 diffuse(vec4 N, vec4 L, vec4 C)
{
 C = C* max(0, dot (N, normalize (L)));
 return C;
}

vec4 diffuse(in vec4 N, in vec4 L,
 in vec4 C)
{ ... } // same code as above

vec4 diffuse(const in vec4 N,
 const in vec4 L,
 in vec4 C)
{ ... } // same code as above

void diffuse(in vec4 N, in vec4 L,
 in vec4 C,
 out vec4 result)
{
 result = C* max(0,
 dot (N, normalize (L)));
}

void diffuse(in vec4 N, in vec4 L,
 inout vec4 C)
{
 C = C* max(0, dot (N, normalize (L)));
}

All predefined functions can be subdivided
into three groups:

I. The first group cannot be emulated by a
shader since they map to some hardware
functionality such as texture mapping.

II. Another group represents functions
achieving a high performance gain when
implemented in hardware such as trigo-
nometric operations.

III. The third and last group are supported for
convenience and are likely to perform
trivial tasks such as clamping. The pro-
grammer should call predefined functions
as often as possible since they can be
translated to optimal code or even map
one-to-one to a hardware instruction.

Overloading of functions is not supported,
hence two functions known under the same
name must differ by at least one argument.
Overwriting a built-in function is possible but
not advisable.

The language disallows direct or indirect re-
cursion yet. This feature may be added in later
revisions of GLSL if proved to be necessary.

4.6 Control Structures
Five fundamental building blocks are available
in GLSL:

− statements and declarations
− function definitions
− selection (if -else)
− iteration (for , while , do-while)
− jumps (return , break , continue ,

discard)

The grammar defines a shader as a sequence of
declarations and functions bodies. Each func-
tion in turn consists of statements which may be
selections, iterations or jumps.

Each statements is delimited by a semi-
colon. In addition, statements can be grouped
by curled braces into compound statements.

All these language feature comply to the
well-known syntax of C. The only addition is
the discard keyword that allows a fragment
shader to drop a single fragment.

Later releases of GLSL may add the
switch statement which is missed in the ini-
tial version since it is desirable to support float-
ing-point variables but yet still unclear how im-
plement that feature efficiently. By now, the
switch statement has to be emulated by re-
peated if statements.

The OpenGL Shading Language - 10 -

4.7 Preprocessor
Many of the core features of C can be found in
GLSL, too. A preprocessor handles almost all
of the commonly used C pragmas such as #ifdef
and #error. A few predefined macros, like
__LINE__, are also expanded.

/* a very long comment
that covers several lines */

// a short annotation

Pragmas are used to give the compiler hints
about debug and optimization issues, too. Yet
there is no standardized set of these compiler
pragmas so their use may lead to non-portable
shaders.

Comments are defined according to the C++
standard, which means that they cannot be
nested, too. The example below give a demon-
stration of both comment styles.

5 USING SHADERS

5.1 Integration into the OpenGL
API

Objects represent an generalized OpenGL struc-
ture containing a state and some associated
data. A handle that is shareable across context
boundaries references them. Prior to the GLSL,
two kinds of objects existed: texture objects and
display lists.

A special kind of objects are shader objects
that encapsulate the source code of shaders. A
single shader may consist of many shader ob-
jects and is either a vertex shader or a fragment
shader. For example, some shader objects con-
tain handy functions repeated called from an-
other shader object and thus serve as a library.
No more than one vertex shader object and one
fragment shader object has to provide the main
function which serves as an entry point like in
C.

Program objects aggregate all shader objects
necessary to form a shader. Technically spoken,
all required shader objects have to be attached
to a program object. These program objects
may be added to the current OpenGL context in
order to be activated. Only one program object
is active at a time.

Compared to the C development model, one
can think of shader objects as source code being
compileable while program objects refer to the

step of linking and generating an actually ex-
ecutable component.

The following code excerpt demonstrates
how to setup a plain program object consisting
of a vertex and a fragment shader:

GLhandleARB vs, fs, program;

// create vertex shader object
vs = glCreateShaderObjectARB
 (GL_VERTEX_SHADER_ARB);
glShaderSourceARB(vs,1,&vsSource,NULL);
glCompileShaderARB(vs);

// create fragment shader object
fs = glCreateShaderObjectARB
 (GL_FRAGMENT_SHADER_ARB);
glShaderSourceARB(fs,1,&fsSource,NULL);
glCompileShaderARB(fs);

// create program object
program = glCreateProgramObjectARB();

/* attach both shader object
 to the program object */
glAttachObjectARB(program, vs);
glAttachObjectARB(program, fs);

// link program object
glLinkProgramARB(program);
glUseProgramObjectARB(program);

Most shaders can be extensively configured
by various parameters. Passing these uniforms
to the program objects works via the new API
extensions, too. After receiving a handle by
calling glGetUniformLocationARB , you
can set the corresponding uniform by invoking
glUniform{1…4}{f,i,b}ARB . There are
specialized versions of this instruction available
for pointers and matrices as well.

Glint hParamFloat,
 hParamVector,
 hParamMatrix;

// get locations of parameters
hParamFloat =
 glGetUniformLocationARB(program, “f”);
hParamVector =
 glGetUniformLocationARB(program, “v”);
hParamMatrix =
 glGetUniformLocationARB(program, “m”);

// set parameters
glUniform1fARB(hParamFloat, 0.42);
glUniform3fARB(hParamVector,
 0.5, 1.0, 0.0);
glUniformMatrix3fvARB(hParamMatrix,
 9, false, pMatrix);

Calling glDeleteObjectARB frees all re-
sources associated to an object, no matter
whether it is shader of program object.

The OpenGL Shading Language - 11 -

Since setting up and enabling a shader modi-
fies the current OpenGL context it cannot be
done between glBegin and glEnd .

6 CG AND HLSL
NVIDIA designed Cg with the intention in
mind to provide a very abstract and extensible
shading language based on C (therefore Cg is
an abbreviation of “C for Graphics”). Cg is
available for both major 3D graphics APIs
OpenGL and DirectX hugely increasing the
possible application scenarios of shaders fol-
lowing the philosophy “write once, run any-
where”. It introduced the profile concepts that
gives the compiler some hints how to optimize
the generated code depending on hardware ca-
pabilities and system features.

Cg is built around the same vertex shader /
fragment shader separation as the OpenGL
Shading Language but gives the developer the
opportunity to mix assembler and high-level
shaders arbitrarily. In consequence, Cg requires
an explicit binding of attributes, uniforms and
varyings allowing more flexibility at the cost of
additional API calls.

HLSL shares lots of concepts and features
with Cg since both were developed in close co-
operation. It does compile the shaders outside
the graphic card’s driver, too. Therefore the ap-
plication is aware of the actually executed as-
sembler code which is not the case and even
impossible for the OpenGL Shading Language.

Because HLSL and Cg come with a com-
piler already written it is easier for a hardware
vendor to deliver drivers for both languages.
The long delay for stable GLSL drivers is
mainly caused by insufficiently working GLSL
compilers and not by hardware limitations (fig-
ure 4).

7 EXPERIENCES
Shess, a shader based chess game supports
three kinds of shaders available for OpenGL:
ARB assembler, NVIDIA’s Cg and GLSL (see
figure 5). All three languages follow similar
strategies of integrating themselves in the
OpenGL environment. They offer extensions
that may be invoked at any time (except within
glBegin and glEnd blocks) but not all
graphics accelerators fully support them.

I often missed a proper debug mechanism.
Although GLSL by default provides access to
its error log via the glGetInfoLogARB and
glValidateProgramObjectARB inter-
faces, the returned messages were not always
clear and sometimes even misleading.

To bypass driver insufficiencies, I had to
write short shaders consisting of basic opera-
tions. The drivers had no problems to optimize
them properly and there was no noticeable loss
of performance compared to ARB assembler.
Unfortunately, it is not possible to retrieve the
assembler code generated by the GLSL com-
piler which would be interesting to examine.
However, the code may differ depending on the
actual hardware and the installed graphics
driver.

HLSL Shader GLSL Shader

DirectX

HLSL Compiler

Graphics Card

Direct3D Driver

Hardware

Graphics Card

OpenGL Driver

Hardware

GLSL
Compiler

Assembler

HLSL

GLSL
D

ire
ct

X

O
penG

L

µ−µ−µ−µ−ops

µ−µ−µ−µ−ops

Figure 4. Shader compilation of HLSL and GLSL

Figure 5. Screenshot of Shess

The OpenGL Shading Language - 12 -

8 CONCLUSION
The OpenGL Shading Language proved to be
quite effective and comfortable in its applica-
tion. The effort to integrate it in modern graph-
ics engine is low and does not require substan-
tial changes of existing designs.

The insufficient support of GLSL by the ma-
jor graphics hardware vendors defers a satisfac-
tory usage in current applications. It is to expect
that NVIDIA and ATI will officially release
adequate driver in early 2004 opening the con-
sumer market for GLSL. A beta version of
GLSL for ATI R300 chips is yet available but
still very instable. Even ATI’s offline GLSL
test suite called Ashli cannot handle all well-
formed GLSL shaders.

The latest computer games tend to heavily
utilize shaders to achieve various effects and
improve the overall rendering performance. Up
to now, none of the major game engines, like
Unreal Warfare or Doom 3, directly supports
GLSL. On the other side, the importance of
DirectX 9 compliance in the field of marketing
led to a market where nearly all hardware ven-
dors support HLSL. Cg does not play an impor-
tant role as of today and there are rumors that
Cg may be obsolete in the near future.

There are severe compiler and hardware im-
provements required to bring shaders’ perform-
ance closer to the goal of providing an interac-
tive real-time experience. Especially expensive
fragment operations known from high quality
images rendered by programs like Maya are
still unrealistic today.

9 ACKNOWLEDGMENTS
Marc Nienhaus, PhD candidate at the Hasso-
Plattner-Institute, supervised and reviewed this
paper as well as the accompanied presentation.
Florian Kirsch, a PhD candidate at the same in-
stitute, shared his experiences gathered in writ-
ing basic GLSL samples and integrating them
in VRS.

VRS, the Virtual Rendering System, has
been developed at the Chair of Computer
Graphics Systems headed by Prof Jürgen Döll-
ner at the Hasso-Plattner-Institute.

10 REFERENCES
[3Dlabs02] OpenGL Shading Language White
Paper, version 1.2, 2002.

[Akenine-Möller02] Tomas Akenine-Möller
and Eric Haines, Real-time Rendering, 2nd edi-
tion, A. K. Peters, 2002.

[Alias] Maya 5 by Alias Systems Inc.,
http://www.alias.com

[ATI] ATI, http://www.ati.com

[Cook84] Robert L. Cook, Shade Trees, SIG-
GRAPH 1984, Minneapolis.

[Cook87] Robert L. Cook, Loren Carpenter and
Edwin Catmull, The Reyes Image Rendering
Architecture, SIGGRAPH 1987, Anaheim.

[Deering95] Michael Deering, Geometry Com-
pression, SIGGRAPH 1995, Los Angeles.

[Engel02] Wolfgang F. Engel, ed., Direct3d
ShaderX, Wordware, 2002.

[Fernando03] R. Fernando and Mark J. Kilgard,
The Cg Tutorial: The definitive guide to pro-
grammable real-time graphics, Addison-Wes-
ley, 2003.

[Gray03] Kris Gray, Microsoft DirectX 9 Pro-
grammable Graphics Pipeline, Microsoft Press,
2003.

[Hanrahan90] Pat Hanrahan and Jim Lawson, A
language for shading and lighting calculations,
SIGGRAPH 1990, Dallas.

[Intel] Intel Corporation, http://www.intel.com

[Jaquays99] Paul Jaquays and Brian Hook,
Quake 3: Arena Shader Manual, Revision 12,
1999.

[Kernighan88] B. W. Kernighan and D. M.
Ritchie, The C Programming Language, Pren-
tice Hall, 1988.

[Krüger03] Jens Krüger and Rüdiger Wester-
mann, Linear Algebra Operators for GPU Im-
plementation of Numerical Algorithms, SIG-
GRAPH 2003, San Diego.

[McCool01] Michael D. McCool, Jason Ang
and Anis Amad, Homomorphic Factorizations
of BRDFs for High-Performance Computing,
SIGGRAPH 2001, Los Angeles.

[Microsoft02a] Microsoft Corporation, DirectX
9.0 graphics, http://msdn.microsoft.com/directx

[Microsoft02b] Microsoft Corporation, High-
level shader language. In: [Microsoft02a].

[NVIDIA] NVIDIA Corporation,
http://www.nvidia.com

The OpenGL Shading Language - 13 -

[NVIDIA01a] NVIDIA Corporation and
Square, Final Fantasy Technology Demo,
SIGGRAPH 2001, Los Angeles,
http://www.nvidia.com/object/final_fantasy.htm

[NVIDIA01b] Chris Maughan and Matthias
Wloka, Vertex Shader Introduction, NVIDIA
White Paper, 2001.

[NVIDIA03a] NVIDIA Corporation. Cg toolkit,
Release 1.1, http://developer.nvidia.com/Cg

[NVIDIA03b] William R. Mark, R. Steven
Glanville, Kurt Akeley, Mark J. Kilgard, Cg: A
system for programming graphics hardware in
a C-like language, SIGGRAPH 2003, San
Diego.

[Olano95] Marc Olano, Anselmo Lastra, Steven
Molnar and Yulan Wang, Real-time Program-
mable Shading, Symposium on Interactive 3D
Graphics, 1995.

[Olano98] Marc Olano, Anselmo Lastra, A
Shading Language on Graphics Hardware: The
PixelFlow Shading System, SIGGRAPH 98, Or-
lando.

[OpenGL02] Mark Segal and Kurt Akeley, The
OpenGL Graphics System: A Specification, ver-
sion 1.4, OpenGL Architecture Review Board,
2002, http://www.opengl.org

[OpenGL03a] Mark Segal and Kurt Akeley,
The OpenGL Graphics System: A Specification,
version 1.5, OpenGL Architecture Review
Board, 2003.

[OpenGL03b] John Kessenich, Dave Baldwin
and Randi Rost, The OpenGL Shading Lan-
guage, version 1.05, 2003.

[Peercy00] Mark S. Peercy, Marc Olano, John
Airey and P. Jeffrey Ungar, Interactive Multi-
Pass Programmable Shading, SIGGRAPH
2000, New Orleans.

[Perlin85] Ken Perlin, An image synthesizer,
SIGGRAPH 1985, San Francisco.

[Pixar] Pixar Inc., http://www.pixar.com

[Proudfoot01] Kekoa Proudfoot, William R.
Mark, Svetoslav Tzvetkov and Pat Hanrahan, A
Real-Time Procedural Shading System for Pro-
grammable Graphics Hardware, SIGGRAPH
2001, Los Angeles.

[Rost03] Randi Rost and Bill Licea-Kane, The
OpenGL Shading Language, SIGGRAPH 2003,
San Diego.

[Stroustrup00] Bjarne Stroustrup, The C++
Programming Language, 3rd ed, Addison-
Wesley, 2000.

11 APPENDIX

11.1 Today’s GLSL Availability
The OpenGL Shading Language has been de-
signed in early 2001 by 3Dlabs [3Dlabs02] who
eagerly push OpenGL 2.0, too. Until now,
3Dlabs remains the only vendor actively pro-
moting and supporting GLSL.

Since OpenGL 2.0 has not been published,
GLSL was accepted as an ARB extension
known as ARB_shading_language_100
for OpenGL 1.5 to underline the importance of
GLSL. Recent drivers of ATI also expose this
extension and one should expect the same for
NVIDIA within a few months.

ATI published for free a neat tool called
Ashli (Advanced SHading Language Interface,
figure 6) translating Renderman and GLSL
shaders to native OpenGL ARB or DirectX 9
assembler. Almost all modern graphics accel-
erators are able to execute these assembler
shaders. Not all features are supported by Ashli,
though, one gains remarkable insights into the
general ideas and concepts behind these two
languages. A basic optimizer helps to achieve
real-time performance in most cases, which is
interesting especially for Renderman shaders as
there not designed to run in real-time by de-
fault.

Figure 6. Ashli GLSL test suite [ATI]

The OpenGL Shading Language - 14 -

11.2 Exemplary Shader

11.2.1 Vertex Shader
The following vertex shader computed the
model-view projection formerly done by the
fixed functionality pipeline of OpenGL. It does
the same for the normals and the incident vec-
tor.

// modified vertex shader of Ashli

// vertex to fragment shader io
varying vec3 N;
varying vec4 I;

void main()
{
 // position in eye space
 P = gl_ModelViewMatrix * gl_Vertex ;

 // position in clip space

 gl_Position =
 gl_ModelViewProjectionMatrix *
 gl_Vertex ;

 // normal transform
 N = gl_NormalMatrix * gl_Normal ;

 // incident vector
 I = P - gl_ModelViewMatrix [3];
}

11.2.2 Fragment Shader
The fragment uses the normal to generate a
color and sets a random alpha value (generated
by Perlin noise). The resulting image is shown
in figure 7.

// vertex to fragment shader io
varying vec3 N;
varying vec4 I;

// entry point
void main()
{
 gl_FragColor = N;
 gl_FragColor [3] = noise1 (N);
}

Figure 7. Running an exemplary shader

