
Lehrstuhl für Informatik III — Prof. Dr. M. Gössel				
Grundlagen der technischen Informatik				
Grundlagen digitaler Systeme				
Übungsblatt Nr. 9	07.12.1999			
Abgabetermin: 14.12.1999 16:45 Uhr				

Aufgabe 39

Die dargestellte Schaltung realisiert eine Boolesche Funktion $f(x_1, x_2, x_3, x_4, x_5)$. Bilden Sie die vollständige DNF dieser Funktion. Minimieren Sie dann die Funktion mit dem Quine-McCluskey Verfahren und stellen Sie das Ergebnis wieder als Schaltbild dar!

Aufgabe 40

Es sei $f(x, y, z) = 1 \oplus y \oplus xz \oplus xy \oplus yz$.

- a) Finden Sie die vollständige DNF!
- b) Stellen Sie f auf dem Booleschen Würfel dar und ermitteln Sie aus dieser Darstellung die verkürzte DNF!
- c) Geben Sie zwei verschiedene minimale DNFen für f an und stellen Sie die zugehörigen Überdeckungen farblich auf dem Booleschen Würfel dar!

Aufgabe 41

Es sei $f(x_1, x_2, x_3, x_4, x_5) = x_1x_4 \vee \overline{x_1} \overline{x_4} \vee \overline{x_2} x_5 \vee x_1x_3x_4 \vee x_2x_3\overline{x_4} \vee x_1x_2x_3x_5$.

- a) Finden Sie die VDNF!
- b) Ermitteln Sie mit dem Quine-McCluskey Verfahren alle Primimplikanten und geben Sie die verkürzte DNF an!
- c) Stellen Sie in einer Tabelle dar, wie die zu f gehörigen Fundamentalkonjunktionen von den Primimplikanten überdeckt werden und ermitteln Sie aus dieser Tabelle eine kürzeste DNF für f!

Aufgabe 42

Ermitteln Sie die Primimplikanten für die Funktion f aus Aufgabe 41 mit dem Konsensus-Verfahren!

Aufgabe 43

Eine Boolesche Funktion g sei durch folgende Wertetafel gegeben:

x_1	x_2	x_3	$g(x_1,x_2,x_3)$
0	0	0	*
0	0	1	*
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

(Dabei steht * für *don't care.*) Legen Sie die Werte für g(0,0,0) und g(0,0,1) so fest, daß eine möglichst kurze DNF entsteht und geben Sie diese DNF an!