Aufgabe 29

Beweisen Sie, daß die Klasse K_1 prävollständig ist!

Aufgabe 30

Ist
$$f(x_1, x_2, x_3) = 1 \oplus x_1 x_2 x_3 \oplus x_2 \oplus x_3$$
 eine Sheffer-Funktion?

Aufgabe 31

Für jede Boolesche Funktion $f = f(x_1,...,x_n)$ gilt $\frac{df}{dx} = f \oplus f_{x_i := \bar{x_i}}$.

f und g seien zwei n - stellige Boolesche Funktionen. Zeigen Sie, daß dann folgendes gilt:

1

$$\frac{d(f \land g)}{dx_1} = f \frac{dg}{dx_1} \oplus g \frac{df}{dx_1} \oplus \frac{df}{dx_1} \frac{dg}{dx_1}$$

b) Berechnen Sie
$$\frac{df}{dx_1}$$
, $\frac{d^2f}{dx_1dx_2}$, $\frac{d^3f}{dx_1dx_2dx_3}$ für $f(x_1, x_2, x_3) = x_1x_2 \lor x_1x_3 \lor x_2x_3$

Aufgabe 32

Die Funktionen \land,\lor,\lnot können auf der Menge $\{0,1\}$ als logisches "UND", "ODER" bzw. "NICHT" interpretiert werden, wenn wir 0= "Falsch" und 1= "Wahr" setzen.

- Verallgemeinern Sie diese Funktionen auf die dreielementige Menge $\{0,1,u\}$ (Wertetabelle), a) wobei u als "Unbekannt" zu interpretieren ist!
- Untersuchen Sie, ob die Gesetze $x \wedge y = \overline{\overline{x} \vee \overline{y}}$ und $x \vee \overline{x} = 1$ bei dieser b) Verallgemeinerung immer noch gelten!
- Kann man aus diesen Funktionen alle Funktionen auf der Grundmenge $\{0,1,u\}$ erzeugen? c) (Begründung!)

Aufgabe 33

Finden Sie für die Funktion $f(x_0, x_1, y_0) := \begin{cases} x_0 \text{ wenn } y_0 = 0 \\ x_1 \text{ wenn } y_0 = 1 \end{cases}$ eine (einfache!) DNF und geben Sie ein dazugehöriges (so weit wie möglich vereinfachtes!) Schaltbild an!

Aufgabe 29

 K_1 ist prävollständig Behauptung:

Es ist zu zeigen: für alle $f \in K_1$ gilt: $K_1 \cup \{f\}$ ist vollständig

 $- f \notin K_1 \Rightarrow f(1,1,1,...,1) = 0$ Beweis:

- $1 \in K_1 \Rightarrow$ Konstante 0 ist aus $K_1 \cup \{f\}$ ableitbar

2

 $- \rightarrow \in K_1, \ \overline{x} = x \rightarrow 0$, Negation ebenfalls ableitbar aus $K_1 \cup \{f\}$

- $\land \in K_1$, also ist $\{\neg, \land\}$ ableitbar und selbst eine Basis, daher können alle anderen Funktionen abgeleitet werden

Schlußfolgerung: $K_1 \cup \{f\}$ ist vollständig und K_1 ist prävollständig

Aufgabe 30

x_1	x_2	x_3	f	Es laßt sich durch das Betrachten der Wertetabelle folgendes erkennen:
0	0	0	1	$f \notin K_0, K_1, K_{sd}, K_{mon}$
0	0	1	0	0 1 Sur mon
0	0 0 1 1 0 0 1 1	0	0	Beim Betrachten der Formel fällt auf:
0	1	1	1	$f(x_1, x_2, x_3) = 1 \oplus x_1 x_2 x_3 \oplus x_2 \oplus x_3 \Rightarrow f \notin K_{lin}$
1	0	0	1	<u> </u>
1	0	1	0	Es folgt: f gehört keiner der fünf Klassen an und ist daher eine
1	1	0	0	Sheffer-Funktion.
1	1	1	0	

Aufgabe 31

a)
$$\frac{d(f \land g)}{dx_{i}} = (f \land g) \oplus \left(f_{x_{i} := \bar{x}_{i}} \land g_{x_{i} := \bar{x}_{i}}\right) \Rightarrow f_{x_{i} := \bar{x}_{i}} = f \oplus \frac{df}{dx_{i}}$$

$$= (f \land g) \oplus \left[\left(\frac{df}{dx_{1}} \oplus f\right) \land \left(\frac{dg}{dx_{1}} \oplus g\right)\right] = \left(\overline{f} \lor \overline{g}\right) \oplus \left[\left(\overline{\frac{df}{dx_{1}}} \oplus f\right) \lor \left(\overline{\frac{dg}{dx_{1}}} \oplus g\right)\right]$$

$$= \left(\overline{f} \oplus \overline{g} \oplus \overline{f} \overline{g}\right) \oplus \left[\left(\overline{\frac{df}{dx_{1}}} \oplus f\right) \oplus \left(\overline{\frac{dg}{dx_{1}}} \oplus g\right) \oplus \left(\overline{\frac{df}{dx_{1}}} \oplus f\right) \left(\overline{\frac{dg}{dx_{1}}} \oplus g\right)\right]$$
a)
$$= 1 \oplus \overline{f} \oplus \overline{g} \oplus \overline{f} \overline{g} = 1 \oplus 1 \oplus f \oplus 1 \oplus g \oplus (1 \oplus f) \land (1 \oplus g) = fg$$
b)
$$= 1 \oplus \frac{df}{dx_{1}} \oplus f \oplus 1 \oplus \frac{dg}{dx_{1}} \oplus g \oplus \left(1 \oplus \frac{df}{dx_{1}} \oplus f\right) \land \left(1 \oplus \frac{dg}{dx_{1}} \oplus g\right)$$

$$= f \frac{dg}{dx_{1}} \oplus g \frac{df}{dx_{2}} \oplus \frac{dg}{dx_{1}} \oplus f g$$

$$= fg \oplus f \frac{dg}{dx_1} \oplus g \frac{df}{dx_1} \oplus \frac{df}{dx_1} \oplus \frac{dg}{dx_1} \oplus fg = \underbrace{f \frac{dg}{dx_1} \oplus g \frac{df}{dx_1} \oplus g \frac{df}{dx_1}}_{} \oplus \underbrace{\frac{df}{dx_1} \oplus \frac{dg}{dx_1}}_{} \oplus \underbrace{\frac{dg}{dx_1} \oplus \frac{dg}{dx_1}}_{} \oplus \underbrace{\frac{dg}{dx_1}$$

b)
$$\frac{df}{dx_1} = x_2 \oplus x_3$$
 $\frac{d^2f}{dx_1dx_2} = (x_3) \oplus (1 \oplus x_3) = 1$ $\frac{d^3f}{dx_1dx_2dx_3} = 0$

Aufgabe 32

	x_1	x_2	^	V	\overline{x}_1	\bar{x}_2	$\overline{\overline{x}_1 \vee \overline{x}_2}$	$x_1 \vee \overline{x}_1$	$x_2 \vee \overline{x}_2$	
	0	0	0	0	1	1	0	1	1	
	0	1	0	1	1	0	0	1	1	
	0	и	0	и	1	u	0	1	и	
a)+b)	1	0	0	1	0	1	0	1	1	
a)±0)	1	1	1	1	0	0	1	1	1	
	1	и	u	1	0	u	u	1	u	
	и	0	0	и	и	1	0	u	1	
	и	1	u	1	u	0	и	и	1	
	и	u	u	и	u	u	u	u	u	

Der Tabelle läßt sich entnehmen, daß $x_1 \wedge x_2 = \overline{\overline{x_1} \vee \overline{x_2}}$ aber nicht $x \vee \overline{x} = 1$.

c) Keine Ahnung!!!

Aufgabe 33

DNF:
$$f(x_0, x_1, y_0) = x_1 y_0 \vee x_0 \overline{y}_0$$
 Schaltbild ist klar!